

I NTRODUCT I ON

We consider an asynchronous communication network, modelled

by a simple undirected graph, G (V,E). The nodes V model the

communication processors of the network and the edges E model the

bidirectional communication channels of the network. Each node

receives and transmits messages on its adjacent edges and

performs local computations. The sequence of messages sent in a

given direction on an edge is received error free by the opposite

node in first in first out (FIFO) order with finite but

unpredictable delays. These messages are queued at the receiving

node until the processor is ready to process them.

In a communication network, the amount of communication

-required to perform some function is often more significant than

the amount of processing required, so the complexity of a

distributed algorithm is appropriately measured in terms of the

total number of bits communicated over all edges. Here, for

simplicity., we simply count the number of elementary messages

sent over all edges, where an elementary message contains at most

some small fixed set of parameters, such as the size of a set of

nodes or the length of a path. Thus the number of bits in an

elementary message can grow at most logarithmically with the size

of the network. The time complexity of an algorithm is the

maximum possible number of time units from the initiation to

completion of the algorithm, assuming that the processing delay

is negligible and that the maximum delay on an edge is one time

So-. -..

unit. The maximum delay on an edge is the maximum interval,

starting from some time when at least one message is being

transmitted on the edge, until a message is received on that

edge. We consider, however, only algori'thms that contain no

knowledge of edge delays; ie. algorithms that are event driven

with no time outs.

THE SHORTEST PATH PROBLEM

Given a graph (V,E) and given a particular root node, r,

find a shortest path tree, using unit edge weights, from r to all

other nodes. That is, the path from r to any other given node n

in the tree must contain the minimum number of edges over all

paths from r to n in the original graph. This problem is often

called the minimum hop problem [11, [23, and distributed

solutions of this problem form building blocks for many network

protocols.

A distributed shortest path algorithm is an algorithm for a

communication network to solve the shortest path problem.

Initially, the processor at each node is unaware of the network

topology but is aware of its adjacent edges, has a copy of the

algorithm, and knows whether or not it is the root. The root

node starts the algorithm, and the other nodes join in when they

receive messages. When the algorithm stops, a shortest path tree

has been identified in the sense that each node knows which

adjacent edges are in the tree and which one of those adjacent

tree edges (called the inedge) is on the path to the root. Each

.......mmm....nllUmlm. , . -, ,

-4-

node also knoWs its level, ie. the number of edges on the path to

the root and the root node, at least, knows that the algorithm is

complete. Note that from a communication standpoint, it is not

necessary for a node to know the shortest path to the root. since

it can send a message on its inedge, and the receiving node can

forward it on its inedge, and so forth to the root. Similarly,

the root does not have to know the entire tree and can broadcast

a message to all nodes by sending it on all adjacent edges. Each

node can then forward the message on all tree edges other than

the inedge. The nodes on the path to the root from a given node

will be referred to as ancestors of the node, and the nodes for

which a given node is an ancestor are the descendants of that

node.

SIMPLE SHORTEST PATH ALGORITHMS

Note that the shortest path problem with equal edge weights

is trivially simple in a synchronous network where all edge

delays are the same. The root simply sends a message over each

of its edges telling the neighboring nodes that they are

neighbors of the root. Each such neighbor sets its level to 1

and sets the edge on which the message was received as the

inedge. Each of these nodes immediately sends out a message on

all other edges telling the recipients that they are neighbors of

a level 1 node. In general, when a node receives a message that

it is the neighbor of a level i node, then the node (if not at

level i or less itself) sets its level to i+1, sets its inedge to

....................................... ..-.........- .

~-.-1q

an eoge over (miuch the above message was received, ano sends a

message cn the other edges that the recipient is the neignbor of

a level i+l node. Because of the uniform delay, each node hears

its first message from a node at the next lower level and thus

sets its level and inedge correctly. When a given node (other

than the root) has heard a message or acknowledgement from each

neighbor, it send an acknowledgement on its inedge, informing its

immediate ancestor both that that edge is in the tree and that

the algorithm is complete for all descendants of the given node.

Thus :he acknowledgements are collected from the leaves to the

root indicating completion of the algorithm. It is easy to see

that at most two messages are sent over each edge, one in each

direction, yielding a communication complexity of O(E) and a time

complexity of '(U) where E=JEI and V=IU I .

Note that any shortest path algorithm requires at least one

message to be sent on each edge. To see this, suppose that an

algorithm failed to send a message over some given edge of some

network. Consider modifying the network to contain one or more

nodes at the middle of the given edge. These nodes would receive

no messages with the given algorithm and thus could not determine

their level. Similarly any algorithm requires at least as many

time units as the level of the highest level node, which could ne

V-I in the worst case. Thus any shortest path algorithm r-equ ires

at least a communication complexity of O(E) and a time complexity

of 0M().

For an asynchronous network with unknown edge delays, the

above algorithm doesn't work since a node might hear it,. first

i<-

li i lkulii h/l I t.i..i" ':"

message via a longer path than the shortest path. The ciassical

and mcst obvious solution to this problem is a distributed form

of the Bellman algorithm. This algorithm operates with the same

messages as the previous algorithm except that if a node, after

setting its level, receives a subsequent message from a node on a

shorter path, then that node changes its level and inedge, and

sends another message at its reduced level to all other

neighbors. This alaorithm, generalized to arbitrary edge

lengths, was in essence used in the original Arpanet routing

algorithm [31. From a practical point of view, the distributed

Bellman algorithm is simple and rarely requires more than a few

messages per edge. Since any distributed shortest path algorithm

requires at least one message per edge, the search for better

algorithms in the communication complexity sense is primarily of

theoretical interest.

Another obvious distributed shortest path algorithm, and the

basis for our new algorithm, is what we call the basic

coordinated shortest path algorithm. This algorithm works in

successive iterations, with the beginning of each iteration

synchronized by the root node. Initially, the root sends a

message to each neighbor indicating the first iteration of the

algorithm. Each recipient marks its level as 1, marks the edge

on which the message was received as the inedge, and sends an

acknowledgement back to the root on the inedge. When the root

receives an acknowledgement from each neighbor, it starts

iteration 2 by sending an iteration 2 message to each neighbor.

Each neighbor then forwards the message to each of its neighbors

17. .

.

"-''' ' '" • + ,' .

-7-

other than the root.

In general, after the i-it- iteration is :omplete, the

Shortest path tree has been formed out to level i-i. The root

then broadcasts the message for iteration i out on this tree and

each node at level less than i-i will rebroadcast the message to

its immediate descendants and so forth out to level i-I (see

figure 1). The nodes at level i-i rebroadcast the message over

all edges other than the inedge (or optionally over all edges not -. -

already known to be at lower level than i). Each node, if it

first receives a message during iteration i, sets its level at i,

sets its inedge to the edge on which the first such message is

received, and sends an acknowledgement (ack) on this edge. In

addition, for each subsequent message at iteration i or above

that the node receives on an edge other than this inedge, the

node returns a negative acknowledgement (nak) on that edge, thus

informing the sender that the given edge is not in the shortest

path tree. Each node at level i-i, after receiving an ack or nak

to each iteration i message sent, sends an ack on its inedge.

including the number of acks that it received. Each node at

lower level, after receiving an ack on each outgoing tree edge,

sums the numbers accompanying these acks, thus calculating its

number of level i descendants. Each non-root node sends an ack

with this sum on its inedge. The root node terminates the

algorithm if this sum (i.e. the total number of level i nodes) is

zero, and otherwise starts iteration i+1.

To analyze the algorithm's complexity, note that each

broadcast message is accompanied by exactly one ack or nak in the

opposite direction over the same edge. Each noma sends at most

one ack per iteration. Each node also sencs at most ona hec.K

over each adjacent edge not in the shortest path trze. Thus,

lettina L be the number of iterations, the total numoer of acks -, -

is at most 2E+LV, and the total number of all kinds of messages

is at most 4E+2LV or O(V2). We can identify the term 2LV as the

cost of synchronizing the algorithm. The time required to

synchronize the ith iteration is 2i, and thus the time complexity

for synchronization (and thus for the entire algorithm) is O(LX)

= O(V-). If one considers a simple line network with the root at

one end, one sees clearly how inefficient this algorithm is.

PREVIOUS WORK ON DISTRIBUTED SHORTEST PATH ALGORITHMS

Subsequent work on distributed shortest path algorithms has

concentrated on reducing the cost of synchronization from that of

the coordinated algorithm. One approach, taken by Gallager Ell

and Frederickson E4], processes a group of levels at a time,

synchronizing back: to the root only once for each group. In the

algorithm of E43, each group consists of V/iE levels. The

distributed Bellman algorithm is used within a group and the

basic coordinated algorithm is used between groups. This leads

to a communication and time complexity of 0(VE), which ranges

from O(V 1 5) for very sparse graphs to O(V 2) for very dense

graphs. Another approach, taken by Awerbuch [5], was based on

constructing a subgraph on which to perform the synchronization.

This led to a communication complexity of 0(V 2) and a time

compla'itv of OEV log V].

INFORMAL DESCRIPTION OF THE NEW ALGORITHM

The new alorithm to be described is similar to that of r13

and [4] in that it is based on the basic coordinated aloorithm.

synchronizing only between successive groups of nodes. The

difference is that here the number of levels processed in each

group is a function of the number of nodes in that group. We

shall see that the communication complexity of the resulting

algorithm is O(V 6 +E) and the time complexity is O(V 1 " 6)

The algorithm exercised by the root node depends on V, which

is first computed as follow. First, the root broadcasts a

message to all of its neighbors. Each node, upon receiving the

message for the first time, sets its inedge to the edge on which

the message is first heard and broadcasts the message to all of

its other neighbors. The set of inedges so formed constitutes a

spanning tree of the graph. Each edge also sends a nak on each

edge other than the inedge on which the message is first

received. The leaves of the spanning tree (other than the root)

are identified by the receipt of naks on each adjacent edge other

than the inedge. Each leaf node then sends a report message on

its inedge reporting that it is a single node. Each other node,

after hearing either a nak or a report from each adjacent edge

other than the inedge, adds the number in each report of nodes,

and adds one for itself. The non-root nodes report this number-

back on their inedges, whereas for the root, this number is the

° ° . - ° . °-o. . .°

42.'.'¢ ." ".- ".- "~~.- ...- " . ' . -....- L.....- ." ,". ..-.. " .. " -..... - -. '

total number o- nodes V in the network. The root then broadcasts"

the number of nodes and edges over the spanning tree, and an

acknowledoement is collected back to the root starting at the

leaves.

At this point, the root starts the algorithm proper. The

nominal number of levels to be processed in each iteration is

[O.2j where Lx] means the integer part of x. The circumstances

under which the actual number of levels processed in an iteration

differs +rom this nominal value will be discussed later.

Initially the root uses the basic coordinated algorithm to

construct a shortest path tree out to this desired number of

levels. At the end of this and each subsequent iteration, a

shortest path tree has been constructed out to some given level

Q. The root then broadcasts a "global" message out to all of the

nodes at level 1 instructing them collectively to extend the

shortest path tree over some subsequent group of levels. The

nodes at level R. are called synch nodes for this new iteration of

the algorithm. Each synch node is responsible for coordinating

the search for nodes whose shortest path to the root passes

through that synch node (ie. for finding its own descendants in

the expanded shortest path tree). Essentially each synch node

applies the basic coordinated algorithm (regarding itself as the

root), exploring the number of levels in the new group. Figure 2

illustrates this process, showing the beginning of the iteration

with a global broadcast from the root to all the synch nodes,

then showing the individual local cycles of each synch node in

e..ploring subsequent levels, and finally showing the .=.ynch nodes

-

)ropagating a global acknowledgement, as in the basic coordinated

igorithm, back to the root.

There is a complication to the aoove rather simple. -

structure, due to the fact that -there is no coordination between

the different synch nodes. Thus the locl trees grown by some

synch nodes may progress quickly. while others progress slowly.

In this case, a node can be seized by a quickly growing local

tree, using a path longer than that through some other synch

node. A slower tree grown by some other synch node will then

eventually reach the given node and provide a shorter path to the

root. An important property of the algorithm is that a node

moves from one local tree to another only when its path length to

the root is decreased. Thus a node can never join the same tree

more than once, and the number of times a node can change local

trees is upper bounded both by the depth of the local trees and

by the number of synch nodes.

Figure illustrates the process of synch nodes growing

local trees and of a node first joining one local tree and then

another. Th-is figure indicates a new complication to be

considered. It is possible for a quickly growing local tree from "S

one synch node to have processed many more levels than some

slower tree, and because of this, a node that moves -from the

quick tree to the slow tree may have many descendants in the fast

tree, all of which will have to change trees. Thus many extra

messages can be generated by a single change, and several

c,- ,,,p icating factors must be introduced into the algorithm to

iimit this messa3ge growth.

I

.. ~~~~~~~~~~.. ,._,,y_- _-.. , "

@ -12-

First, each node, on the cycle after Joining a local tree,

must send out messages on each adjacent edge. Thus if a node has

very high degree and also changes trees often, these adjacent

edge messages dominate the communication complexity for the

entire algorithm. This problem is cured by freezing the growth

of a local tree whenever it seizes a node of very high degree.

In a manner to be described next, this causes some global

synchronization between the local trees, and the frozen tree

remains frozen until it becomes clear that the node of high

degree is in fact on the correct local tree. The appropriate

threshold of node degree to cause this freezing turns out to be

VO. 4.

Recall that the number of levels that each synch node

attempts to process is LV'2J. Each synch node, at its own

speed, uses the coordinated algorithm to construct its own local

shortest path tree, omitting nodes that already have shorter or

equally short paths through other synch nodes. This construction

ceases when one of the three following conditions occurs: 1) the

number of levels processed reaches the attempted depth [V0 . 2 j; 2)

the tree is frozen at some smaller depth by seizing a node of

degree greater than V and 3) the tree finds no new nodes at

some level before reachina the attempted depth. We refer to the

trees and synch nodes for cases 1,2, and 3 above as active,

frozen, and inactive respectively.

Each synch node, after completing its local tree as above,

sends a global ack back on its inedge. If there are *rozen

trees, however, a shortest path tree is not fully constructed out

to the attempted depth of the nev qroup. In this case, we regard

the just completed process o designating the synch nodes,

constructing the local trees as above, and reporting back to the

root as a sub-iteration. The root determines (from the

information reported back) the smallest level at which some tree

became frozen. We are assured that the shortest path tree is

completely known out to that level, and therefore the tree or

trees frozen at that level can be unfrozen. The root then starts

a new sub-iteration, using the same synch nodes as before and

restarting the growth of those trees that had been frozen at that

lowest level. A synch node that is frozen at some higher level

checks to see if it is still frozen (ie. the high degree node

might have been seized by another tree). If so, it immediately

sends an ack back to its inedge, and if not, it continues growing

its tree. Each synch node that is unfrozen in this new sub-

iteration continues to grow its tree until again one of the three

conditions above occurs.

After some number of sub-iterations, the root will find that

there are no more frozen trees and that the global

shortest path tree has been extended by the attempted Lv"'2j

levels. At this point, the final complicating factor in the

algorithm occurs. If the final shortest path tree has a large

number of levels with few nodes at each level, then the global

synchronizing required between iterations will still dominate the

communication complexity. On the other hand, in this situation,

there will be relatively few synchronizing nodes at each

•-14-

iteration. and therefore relatively few opportunities for nodes

to change levels. In this case. it is advantageous to increase

the number of levels in a group to rV0" 4]. We describe the

conditions for this increase more precisely after describing more

of the details of the algorithm.

DETAILED DESCRIPTION AND COMPLEXITY ANALYSIS

The actual algorithm is contained in the appendix. In this

section we give some of the implementation details and describe

some of the properties of the algorithm pursuant to calculating

its communication complexity. There are only four types of

messages used in the algorithm proper (ie. after the calculation

of V) - global broadcasts, global acks, local broadcasts, and

local acks. The global broadcasts are used at the beginning of

each sub-iteration and are propagated from the root out on the

currently formed part of the shortest path tree. These broadcast

messages normally carry three parameters--the level of the synch

nodes, and the initial and desired final levels for the sub-

iteration. When a synch node has completed its task (by becoming

frozen, inactive, or processing out to the desired level), it

sends a global ack back on its inedge, and when a node at a lower

level receives global acks from each of its immediate

descendants, it forwards the global ack on its inedge. Each

global ack contains two parameters. The first is the minimum

2.-

-15--

level at which freezing occured. minimized over the synch nodes

that are descendants of the node sending the global ack, and the

second is the number of descendant synch nodes that are active or

frozen.

When the root receives these global acks from each neighbor,

the root knows whether freezing occured and the minimum level of

such freezing. If freezing occured at some level lower than the

desired level of the sub-iteration, then the root starts another

sub-iteration with the same synch nodes and with a starting level

equal to the minimum freezing level plus 1 (since the shortest

path tree is correctly constructed out to the minimum freezing

level). If the sub-iteration has completed the shortest path

tree out to the desired level of LVO*2j beyond the synch nodes,

then the root node starts a special sub-iteration, using the same

synch nodes and covering only a single level, one beyond the

previous level. If the number of active synchs at the end of

this special sub-iteration exceeds I.V2J, then the iteration

ends and a new iteration starts with the nodes at this newly

calculated level as synch nodes. Otherwise, another sub-

iteration starts, using the old synch nodes and using a desired

level" 0 .4 1 beyond that of the synch nodes.

The reason for this rather peculiar sub-iteration with a

single level is that no node can be seized from one local tree to

another during this sub-iteration. Thus a local tree reported as

active actually contains at least one node at the new level and a

path back to the synch node. Thus it contains at least V 0 2 "

nodes. If the number of active synch nodes exceeds LV(J.2 J, then

................................. -": " ' •-i_...............

at least V0 " 4 new nodes have been added to the shortest path tree

in the entire iteration. Note that for the earlier sub-

iterations, active synch nodes might lose most of the nodes in
t.J

their local trees when other slower trees seize those nodes away,

When an iteration is extended to cover [0.4 1 nodes, then,

if any synch nodes are active at the end of the iteration, the

0.4iteration must add at least V" nodes to the shortest path tree;

if no synch nodes are active (or frozen) at the end of any sub-

iteration, then, of course the algorithm is finished and the

shortest path tree is complete. Thus we have shown that at least

V0 .4 nodes are added to the shortest path tree in every iteration

except perhaps the final iteration. Thus the algorithm contains

at most v' +I iterations.

Observe that each node can receive at most one global

broadcast message per sub-iteration. Thus we can bound the total - "

number of global broadcast messages by bounding the number of

sub-iterations. Suppose first that there are F sub-iterations

caused by frozen trees. Each such sub-iteration unfreezes at

least one node of degree greater than V0 "4, and nodes unfrozen in

different sub-iterations belong to different levels of the final

shortest path tree. Thus there are at least F levels in the

final tree containing nodes of degree greater than V0 .4 , and we

select one such node in each of these levels. Since a neighbor

of a node at level Q must be at level 2 or an adjoining level, we

see that a node can be a neighbor of at most 3 selected nodes.

Thus 3V> FV 0 4 and thus

' "-"" ." ,;" '. ' ... :-- .;; .- ., ;,;. ,'- , - ',, ' ' ,. "" -"" ' -l..

0. 6-j7- .>

F 3V(1

In addition to the sub-iterations caused by frozen trees,

each iteration starts with a sub-iteration of" 1.0' J desired

levels, then performs th= special sub-iteration with one level,

and finally, perhaps, performs the final sub-iteration with a

final desired level rv ° - beyond the synch node. Thus there are

at most three sub-iterations per iteration beyond those caused by

freezing. There are at most V0 6 +1 iterations, leading to at

most 3(V0"6+I) + 3V0 "6 sub-iterations altogether. There are no

global broadcast messages on the initial iteration and at most V

for each subsequent sub-iteration. Thus the total number G of

global broadcast messages satisfies

G S 6V. 6 (2)

Next consider the local broadcasts and acks. We first show

that a node can join at most LV local trees. If a node first

joins a local tree when the desired final level is LVO'2J beyond

the synch level, this result follows since each change of local

tree is accompanied by a decrease in level. If a node first

joins a local tree when the desired final level is rV0 4 I beyond

the synch level, this result follows since the number of active

synch nodes is at most LV-'J.

Consider now what the algorithm does when a node chanoes

levels. During each cycle of the algorithm for growing a local

tree, a node can be in one of two phases. In the first phase, it

-- •.- .o °

- 18- --

has not yet received a local broadcast message, and in the second

ohase, it has passed on the local broadcast and is waiting for

acknowledgements from each active edge. The variable count is

used in the algorithm to keep track of how many acknowledgements

are awaited, and a value of zero for count indicates the first

phase. When a local broadcast message arrives at a node from a

different tree, the cycle number is compared with the node's

current level, and if smaller, the node changes trees. At this

point, if the count variable is positive, the node returns an

acknowledgement on the old inedge with unused state, indicating

to the old parent node that the node has moved to another tree.

Alternatively, if the count is zero, the node sends nothing over 67

the old inedge until the next local broadcast message is

received, at which time it returns an ack with unused state.

Thus, precisely one ack is sent for each local broadcast, even

when nodes change trees.

In counting the number of local broadcast messages for the

algorithm, we consider two types of terms separately, first the

initial local broadcasts sent by a node after changing level, and

second all the other local broadcasts. For the first type, we

note that as a result of the freezing, each node of degree more

than V0 " 4 sends at most one such message on each outgoing edge,

and each node of smaller degree sends at most V0 "2 messages on

each of its at most V € '4 outgoing edges. Thus the total number

of local broadcast messages of this first type, L1 , is at most

F,

1.61

L 2E + V) . ..-

%. 2.<
.

I, ! I I

In counting the second type of local broadcast messages, "e

look at the number of such messages that can be received bv each

node. Such messages are only sent on edges for which the

previous local broadcast was acknowledged with an active or

frozen state, so they can only be received on the inedge of a

node (or what was the inedge when the previous ack was sent).

While the node belongs to one tree, successive messages on the -

inedge contain successively higher cycle numbers except in the

special case where a new sub-iteration is started because of

freezing. In that special case, synch nodes frozen at higher

than the minimum level repeat the prev.ous cycle number to test

if the local tree is still frozen. Since the nodes that receive

these special local broadcast messages do not receive global

broadcast messages for the given sub-iteration, we can regard

these special local broadcast messages as included in our

previous bound on global broadcasts. Ignoring these special

messages. a node can receive at most [V' 4]-i local broadcast

messages of this type for each local tree that it joins. Since

there are at most V0 " 2 such trees, the total number of local

broadcast messages of second type is

L V 1 . 6 (4)

Combining (2), (3), (4) and recalling that there is one ad:

message for each broadcast message, the total number 0+ messages

C for the algorithm is

°".o ,.°-. .

Thus C (E+Y - as claimed.

To bound the time T required by the algorithm, note first

that T 5 C since the algorithm is event drivien and at least one

message must be sent each time unit. Note also that the term 4E

in (5) came from the initial local broadcasts from frozen nodes

and their acknowledoements. Since a node is assumed to s-end its

local broadcasts in parallel, and the ack~nowledgement for each is

returned with no waiting, we see that the term E can be replaced

with V for the time bound, and T -O(Y'

HW KM 3H K

APPENI1X. THE AL.GORlITHMII

Local Variables at nodes

All variables arc integer values except where noted otherwise. ieinitial values of

all of the variables arc arbitrary, except for the variable level, whose initial value

is 00

cycle =current level of the cxploration in the local algorithm.

count = counter of unacknowledged LOCAIIROAIJCASI'messages.

desired-level =the last level to be processed in the iteration

inifialevel =the first level to be processed in the sub-iteration.

level =current estimate of the node's level in shortest path tree.

status = estimate of whether node has frozen descendents, active descen-

dents, or only inactive descendents-, only meaningful for nodes in

local trees. Possible values are {Active,Frozcn,rnactivel.

sic ie(e) = estimate of whether there are frozen descendents, active descen-

dents, or only inactive descendents on the further side of tree

edge e. If e is not a tree e.dge, siaie(e) =unused. It is kept for

each incident edge e. Possible values are

{Froze n,Ac tive, In ward,Inac tive, Un use d).

synch..level =the level of synch nodes.

synch: ..num bet

estimate of the number of active synchs which are descendents of

that node; is meaningful only for nodes in the global tree.

NAssagcs sent during the algoritunt

GLOBAL-.BROADCAST(s,i,d)=

message by which the root triggers execuition of the next sub-

iteration. The message carries the following parameters:

sync hje vel,initialelvel, desired-ievel.

GI.OllI.... A({c . m) =

message by which a node reports on its inedge about the termina-

tion of the sub-iteration. The message carries the following

parameters: cycle, synchs_ntumber.

LOCII.BROADCAST(c) =

message by which a synch node triggers the local exploration pro-

ccss. The parameter c is the cycle number.

LOCAI._ACK(c ,s) =

message by which a node reports about the termina.ion of the

local exploration process. The parameters of the message are c

(the cycle number) and s. The latter determines the state of the

edge.

Procedures used in the algorithm:

XMIT LOCAL_.BROADCAST =

generates LOCAL.BROADCAST messages.

XAIT GLOBALBROADCAST =

generates GLOBALBROADCAST messages.

S YNCtItCONTROL =

procedure executed by the synch nodes after termination of each

cycle.

ROT7ICONTROL =

procedure executed by the root node after termination of each

sub-iteration.

tialization of the algorithm (by the root node)

gin

if the set of incident edges is empty then STOP / *the algorithm is complete /

else

begin

.. .. :.-.

4.

cycle 1:

level :=0,

sync h-lcvc :=O*.

dcsircddjcvcl IkO.4 I:

initial level 1.l

for all cdges c ,statc(e) :=active-,

Call Procedure XMIL-LOCAI.,ROADCAST:

end

*of the in itialization *

Wde algorithm

lure XMI7LLOCALJBR OADCAST

)uflL :=O;

atus :=inactive;

Dr each edge e such that statc(e) = active or frozen

begin

count :=count +1

send LOCAL..BROADCAST(cycle) on edge e-,

end

count =0 then

begin

status :=inactive;

send LOCAL_.ACK(cyc Ic, inactive) on inedge;

end

'of the procedure

tse to receipt of LOCAL.JROADCAST(p) on edge e:

p < level then / node joins new tree tit lower level1

beg in

i f count > 0 and level #00 then send ACK(cyclc.unuscd) on inedgc;

/term nmating branch of old tree if tick awaited *

level :=p:

cycle :=p:

inedge :=e;

state (c): =in ward;

synch_level :=0; /initial value. tu ensure that level > synch-level '

f or all edges e' # e, statc(e') :=active;

if node..degree > YJ"1 then status :=Frozen

else status :=active-,

send LOCALACK(cycle,status) on inedge;

end

-Ise / *p >level

if e =inedge then

i f p > level thcen /*broadcast in u st be propagated ou t iard/1

begin

cycle :=p;

Call Procedure XMIHTLOCAL. BROADCAST:

end

else send LOCALACK(cycic,status) on inedge;

/in this case p = level: this mieans that this is the check for frozen nodes.-

and the current node is in the lav layer*I

else I* e~inedge/1

begin

send LOCAL..ACK(p,unuscd) on edge e;

state(e) :=unused;

end

Ithis occurs for p'2level. e~inedge and negatively acknowledges a broadcast

-(. I. ';L . rJ- L~.

,vhen old tree is retained "/

o" the response "1

:e to receipt of I.OC,.I_ ACK(p.s) on edge e

) =cycle then

'utdated acks satisfy p > cycle: they are ignored /

begin

if s=frozcn then status :=frozen;

else if s=active and status rrozen then status :=active;

state(e) :=s;

count :=count -1;

if count=O then

if level > synch level then / * the node is not a synch */

send L.OCALACK(cycle, status) on inedge;

else Call Procedure SYNCHSCONTIOL

end

of the response */

u re S YNCH_CONTR OL

lcvcl=O and status = frozen then status :=active;

the root ignores freezing on its local iteration *1

status =active and cycle < desircdjevcl then

begin

cycle :=cycle +1;

Call Procedure XAIT.OCAII,_B R OADCAS T

end

e / local exploratio: process has been freezed or term Mated *1

begin

°I.

if status =inactive then synchsnumber :=0.

else synchs.number "--1.

if level > 0 then

send GIOBAI.ACK (cycle,synchsnumber) on inedge

else if level=O then

I - * it is the end of the local cycle at the the root *1

Call Procedure Rool.'coNrROL;

end

end /*of the procedure *1

* Procedure XMITGLOBAL_BROADCAST

begin

count :=0;

.)i synchsnumber :=0;/ lower bound */

*". cycle :=00;/ * upper bound */

for each edge e such that state(e) =active or frozen

begin

count :=count +1;

send GLOBALBROADCAST(synchjlevel,initial_level, desiredjlevel) on e;

end

end / of the procedure */

Response to receipt of GLOBAL_..BROADCAST(si.d) on edge e:

begin

if there exists no incident edge e with state(e)=active or frozen then

send GOHALB ACK(cycle,0) on inedge;

else

begin

synchJevel :=s;

initialJevcl :=i;

1~~~~~~~~~~~~~~~~~. .i.;.".-.-.................... ...,-'.''.'.,--''-.... "-

dcsircd-levcl :=d;

if level < synic hjevci then Call Procedure XMlTG1.OBIAl.,IjV CASTr

else /* level =synch-level I/

begin

if initialjlcvcl~cyclc+l then cycle :=cycle +1;

/*otherwise lest for stillifrozen local tree/

Call Procedure xiMITJOCALB3ROADCAST;

1this invokes execution of the local exploration process*/

end

end

* end of0 the response V

7 Response to receipt of GLOB AL-.A4CK (c, ti) on edge e:

begin

synchs..jumber :=synchs.number +m;

if m > 0 then

* begin

cycle :min {cycle,c};

state(e) :=active-,

* end

* else statc(c) :=inactive;

count :=count - 1;

if count =0 then

if level > 0 then send GL.OBAL..ACK(cycle,synchs...number) on inedge

* else Call Procedure ROOT-CONTROL;

S cn d /of the response V

Procedure ROOT..CONTROL

begin

* it synchsjiumbcr =0 then STOP ;/*algorithm is complete: AM tree is given by

•
*-

.
.-" r .r- r- C" 7 -.' 7F ". . .- - o -w -.°, - -..w " - -

inedges pointing in and inactive edges pointing out *1

else

begin /* next sub-iteration /

initialjevel :=cycle + 1 ;/* starting at the height of lowest tree /

if cycle =desiredjevel then / * otherwise freezing exists and synch-level

and desired-level need not be changed*/

if synchs_number < p'2 and desiredjevel - synchlevel< PA Ithen

desiredjlevel := synch~level + [''l

/*few synchs, make group long /

else

if desiredjevel =synchjcyel + [O2J then

desiredJevel :=desiredJevel +1

/* the estimate of active synchs may be too high; test actual

number of active synch nodes by processing just one layer 1

else

begin /* new iteration *1

synchlevel :=cycle;

desired-level :=synch_level + 1P'.2J;

end

Call Procedure XMITGLOBALBROADCAST

end

end /of the Procedure V

:.... - -... ... ,.....,,... ,..............-..........-................,....... :
... " • " *, .. , ._. .

-21i- -.

REFERENCES

Ell R. G. Gallager. "Distributed Minimum Hop Algorithms", M.I.T.
Technical Report, LIDS-P-1175, January 1982.

12) A. Segall, "Distributed Network Protocols", IEEE Trans.
I.T., Jan. 1963, pp. 23-35.

[3] F. E. Heart, S. M. Ornstein, W. R. Crowther, and D. C.
Walden, "The Interface Message Processor for the ARPA
Computer Network", 1970 Spring Joint Computer Conference,
AFIPS Conference Proceedings.

[4) G. Frederickson, "A Single Source Shortest Path Algorithm
for a Planar Distributed Network", Proc. 2nd Symp. on
Theoretical Aspects of Computer Science, Jan. 1985.

C53 B. Awerbuch, "An Efficient Network Synchronoization
Protocol", ACM Syposium on Theory of Computing, April 1984,
Washington.

- .

.::..

FIGSURE I10 BROADCAST TO F IND RANEW LEIVEL

I FIGURE I1B TESTING NODES RT NEW LEVEL

F ISURE I C ACKNOWLEDGEMENTS

FIGURE 10 CCORDINOTION BEFORE NERT LAYER

Z. 1

SYNCH
NODE

F16URE 21: SLISIL BINIDCRSr

SYNCH

FIGURE 23: LICIIL UEUUDCIST

SYNCH
NODE

SYNCH
NODE

FIGURE 2C: LOCKL OCKNOWLE06EMEWT

. . . . * . - * . .. *

SYNC~H
NODE

SLOW LOCAL TREE

FIGURE 3k EXAMIPLE OF FAST TREE TAKING EXTRA NODES

YNCH
NODE

SYNCH
NODE

SYNCH
NODE

FIGURE 30 LOCAL ACKNOWLEDGEMENT IN SLOW TREE

Distribution List

Defense Documentation Center 12 Copies
Cameron Station
Alexandria, Virginia 22314

Assistant Chief for Technology 1 Copy
Office of Naval Research, Code 200
Arlington, Virginia 22217

Office of Naval Research 2 Copies
Information Systems Program
Code 437
Arlington, Virginia 22217 I

Office of Naval Research 1 Copy
Branch Office, Boston
495 Summer Street
Boston, Massachusetts 02210

Office of Naval Research 1 Copy
Branch Office, Chicago
536 South Clark Street
Chicago, Illinois 60605

Office of Naval Research 1 Copy
Branch Office, Pasadena
1030 East Greet Street
Pasadena, California 91106

Naval Research Laboratory 6 Copies S

Technical Information Division, Code 2627

Washington, D.C. 20375

Dr. A. L. Slafkosky 1 copy
Scientific Advisor
Commandant of the Marine Corps (Code RD-I)
Washington, D.C. 20380

IL.

iiL <

Office of Naval Research 1 Copy

Code 455
Arlington, Virginia 22217

Office of Naval Research 1 Copy
Code 458
Arlington,. Virginia 22217

Naval Electronics Laboratory Center 1 Copy
Advanced Software Technology Division
Code 5200
San Diego, California 92152

Mr. E. H. Gleissner 1 Copy

Naval Ship Research & Development Center
computation and Mathematics Department .
Bethesda, Maryland 20084

Captain Grace M. Hopper 1 Copy

Naval Data Automation Command
Code OOH
Washington Navy Yard ".

Washington, DC 20374

Advanced Research Projects Agency 1 Copy

Information Processing Techniques
1400 Wilson Boulevard
Arlington, Virginia 22209

Dr. Stuart L. Brodsky 1 Copy
Office of Naval Research
Code 432
Arlington, Virginia 22217

Prof. Fouad A. Tobagi
Computer Systems Laboratory
Stanford Electronics Laboratories
Department of Electrical Engineering
Stanford University
Stanford, CA 94305

7--

.......... "
€'.*.....~~~~~~~~~~~~~~~-. = ..- . . .,-. -*.............. . . .%. ,'

